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Abstract    

EEGLAB (sccn.ucsc.edu/eeglab) is an easily extensible, highly evolved, and now 
widely used open source environment for signal processing of electroencephalo-
graphic data running on MATLAB (The Mathworks, Inc.). Here we introduce 
MEEG, an EEGLAB plug-in that appears in the EEGLAB menu of users who 
download it. MEEG gathers functions from EEGLAB and other MATLAB-based 
open source frameworks to read/write and process MEG or simultaneous 
MEG/EEG (MEEG) data. Here we show a first decomposition by independent 
component analysis (ICA) of an MEEG data set and use MEEG plotting tools to 
localize and evaluate maximally independent joint MEG/EEG component pro-
cesses in the data. 

 
Keywords: MEG, EEG, MEEG, Independent Component Analysis, ICA, 

EEGLAB, localization, radial, tangential, dipole, AMICA 

1 Introduction 

EEGLAB (sccn.ucsd.edu/eeglab) (Delorme & Makeig 2004) evolved from an 
ICA Toolbox for Electrophysiological Data Analysis released by Makeig and col-
leagues at The Salk Institute (La Jolla CA) in 1997. Currently EEGLAB is a ma-
ture, actively evolving open-source software environment for electrophysiological 
data analysis running on MATLAB (The Mathworks, Inc.) that makes freely 
available a range of state-of-the-art approaches to describe brain dynamics of ef-
fective cortical and non-brain EEG sources at both the individual and group levels 
(Delorme & Makeig 2004; Makeig et al. 2004). By a 2011 survey (Hanke & Hal-
chenko 2011), EEGLAB may currently be the most widely used open-source 
toolbox for EEG analysis. EEGLAB functions comprise a broad core range of 
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functionality accessible either through its graphic user interface (GUI) and/or di-
rectly from the MATLAB command line, plus plug-in tools and toolboxes that 
implement a wide range of advanced analysis and visualization methods.  

User interface. EEGLAB can be controlled through its GUI (Fig. 1 lower left, 
panel), or more directly through MATLAB scripts and command line calls. Use of 
the GUI is highly convenient for data exploration. The GUI also accumulates a 
history of the commands to EEGLAB functions it issues, enabling processing 
pipelines developed using the GUI to be easily turned into a MATLAB script. Al-
ready many students (worldwide) have learned to write MATLAB data analysis 
scripts by combining the EEGLAB history mechanism with the extensive 
EEGLAB function and wiki documentation (sccn.ucsd.edu/wiki/eeglab). 

Other tools. EEGLAB is the center of a growing ecosystem of open source 
software tools (Fig. 1) that have been released by researchers at the Swartz Center 
for Computational Neuroscience at UCSD (sccn.ucsd.edu). These include the 
Human Electrophysiology, Anatomic Data, and Integrated tools (HeadIT) data ar-
chive and resource (headit.org), with its system for tagging uploaded studies (Ex-
perimental Study Schema (ESS) (Bigdely-Shamlo, Kreutz-Delgado, Kothe, et al. 
2013a), Hierarchical Events Descriptors (HED) (Bigdely-Shamlo, Kreutz-
Delgado, Robbins, et al. 2013b) and a cross-platform system for synchronized col-
lection of data from EEG and many other devices (Lab Streaming Layer, LSL; 
code.google.com/p/labstreaminglayer) plus an extensible, XML-based data format 
(Extensible Data format, XDF; code.google.com/p/XDF) and a Python-language 
scripting framework for controlling simple or very complex experimental para-
digms (SNAP).  

MoBILAB. An object-oriented environment for analysis of multimodal data 
collected under the mobile brain/body imaging (MoBI) paradigm, MoBILAB 
(sccn.ucsd.edu/wiki/Mobilab_software) can export EEG data to EEGLAB for fur-
ther analysis, and may in the future become our primary platform for developing 
and sharing multimodal data analysis methods, since the EEGLAB EEG data 
structure has limited support for different channel types and assumes all data to be 
recorded at the same sampling rate. For MEG/EEG data recorded at the same rate 
this is not much of an inconvenience, as EEGLAB provides a channel type varia-
ble that allows functions to perform EEG analysis and/or MEG analysis of the re-
spective data channel subsets based on their specified channel types. 

EEGLAB plug-ins. The growing range of EEGLAB plug-ins have been previ-
ously described (Delorme et al. 2011). Plug-ins released by SCCN itself include 
advanced Adaptive Mixture ICA (AMICA) for identification of maximally inde-
pendent brain sources with artifact rejection (Palmer 2006; Delorme et al. 2012), 
the DIPFIT toolbox implementing source dipole fitting tools by Robert Oosten-
veld from Fieldtrip (fieldtrip.fcdonders.nl), the Neuroelectromagnetic Forward 
Head Modeling Toolbox (NFT) for creating detailed boundary element model 
(BEM) or finite element model (FEM) head models (Akalin Acar & Makeig 
2010), the Measure Projection Toolbox (MPT) for cross-subject source-level anal-
ysis using measure projection (Bigdely-Shamlo, Mullen, et al. 2013c), the Source 
Information Flow Toolbox (SIFT) for calculation and visualization of multivariate 



3 

causal source dynamics in both event-related and continuous data (Delorme et al. 
2011), and BCILAB, a complete toolbox for building, running, and statistically 
evaluating brain-computer interface (BCI) models (Kothe & Makeig 2010). At 
least 20 other plug-in tools and toolboxes have been released by other research 
groups; these are listed on a wiki page (sccn.ucsd.edu/wiki/EEGLAB_Plugins). A 
facility for automated updating of listed plug-ins to new versions from within 
EEGLAB is planned for EEGLAB v13. 

 
Fig. 1. The EEGLAB environment for electrophysiological signal processing is the center of a 
growing framework of tools developed and released by researchers at the Swartz Center for 
Computational Neuroscience (SCCN) at UCSD. These include software for synchronized multi-
modal recording (SNAP, LSL, XDF), MoBILAB, an object-oriented toolbox for analysis and 
visualization of multimodal data, the HeadIT data and tools resource with its associated tools 
(HED, ESS, etc.), and a growing set of toolboxes that operate as EEGLAB plug-ins (AMICA, 
DIPFIT, NFT, MPT, SIFT, BCILAB, etc.). MEEG is a new plug-in developed by the authors for 
analysis of MEG and MEEG (synchronized MEG plus EEG) data. 

The MEEG plug-in. EEGLAB now includes an MEEG plug-in 
(sccn.ucsd.edu/wiki/MEEG) that expands the ability of EEGLAB users to import 
and analyze MEG and dual-modality MEEG (concurrent MEG and EEG) datasets 
and thereby opening a range of novel data analysis techniques for use by the MEG 
community. MEEG data handling within EEGLAB is tightly coupled to Fieldtrip, 
allowing the EEGLAB data structures it handles to be readily imported from and 
exported to Fieldtrip. Both the EEGLAB environment and the MEEG plug-ins are 
ongoing efforts that we hope other MEG users and methods developers will con-
tribute to. The MEEG developers remain open to partnering with other methods 
developers to share capabilities between MEEG and other MEG toolboxes).  

Data and experiment types supported. In addition to standard EEG data 
types, EEGLAB now supports the loading of MEG and MEEG data through its in-
tegration of the Fieldtrip fileio module. Individual data files can be imported as in-
dividual EEGLAB data sets, or multiple runs can be combined into a single da-
taset using realignment to a common sensor orientation. In addition, the new 
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MEEG plug-in enables EEGLAB to import and export a range of Fieldtrip data 
structures, including raw and epoched data, as well as independent component 
analyses, so that EEGLAB processing can begin after partial analysis in Fieldtrip, 
or can be exported, allowing Fieldtrip to be used for additional processing. EEG 
recording systems provide a single scalar value per sensor location, in contrast to 
the wider variety of MEG sensor types. The scalar model easily accommodates 
magnetometer and radial gradiometer systems, but requires either magnetometers 
or the magnitude of the planar gradient to be chosen (e.g., for Yokogawa system 
data sets).  

Source localization. ICA decomposition enables the profitable use of dipole-
based inverse methods because of the characteristic resemblance of many MEG, 
EEG, or also MEEG independent component scalp maps to the projection of a 
single equivalent dipole, allowing them to be well-fit by a single equivalent dipole 
model (or, in some cases, to a dual-dipole model with symmetric location con-
straints) (Delorme et al. 2012). The DIPFIT toolbox in EEGLAB implements 
equivalent dipole model fitting tools by Robert Oostenveld from Fieldtrip 
(fieldtrip.fcdonders.nl). Dipole fitting tools have been integrated in the the Neuro-
electromagnetic Forward head modeling Toolbox (NFT) (Akalin Acar & Makeig 
2010). These plus some novel distributed source localization methods will be put 
into a toolbox paralleling NFT, to be called the Neuroelectromagnetic Inverse 
Source modeling Toolbox (NIST). 

Processing data from multiple subjects or sessions. EEGLAB supports 
across-subject analysis via a STUDY structure that points to a set of similar EEG 
datasets forming an experimental study. Currently, these datasets are typically 
epoched datasets (sets of data epochs similarly time locked to one or more sets of 
experimental events). EEGLAB Study software can prepare and store a user-
specified set of continuous (power spectrum) and event-related (ERP, ERSP, ITC, 
etc.) measures for each dataset and help the user to separate these measures into 
conditions, sessions, and/or subject groups. Typically, each dataset is associated 
with an ICA decomposition and a list of ‘brain’ components to study, each with an 
equivalent dipole model. The Study functions can then prepare a pair-wise dis-
tance measure between components based on component dipole (and/or scalp 
map) and specified measure distances. Users then can cluster the components us-
ing at least three clustering methods, and can compute statistical contrasts across 
subjects/sessions using either parametric (Gaussian) or non-parametric (bootstrap) 
statistical methods. Clustering scalp channel signals, though less advised, is also 
supported. 

Currently, users can create and process one or more 1xN or NxM statistical de-
signs for a given Study. Thus, for example, given 5 different event-related 
measures for each subject in an experiment, the user can specify Conditions 1-4 as 
forming a 2x2 design, and/or can also compare Conditions 2 vs. 5 in another de-
sign, without needing to duplicate the STUDY structure and its associated meas-
ure files. Both within-subject and across-subject variable types are supported.  

As in practice, the range of experimental designs is much wider (than NxM), 
EEGLAB and some EEGLAB toolbox developers are now working with Cyril 
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Pernet of the University of Glasgow to incorporate his LIMO toolbox into the core 
of EEGLAB study processing. It supports parametric and non-parametric statistics 
for a much wider range of designs (gforge.dcn.ed.ac.uk/gf/project/limo_eeg) (Per-
net et al. 2011). 

Measure projection. An alternate approach to component clustering is taken in 
the Measure Projection Toolbox (MPT) of Nima Bigdely-Shamlo (Bigdely-
Shamlo, Mullen, et al. 2013c). This toolbox focuses on comparing component 
source dynamics for a single measure at a time (for example, ERPs) based on the 
location of the equivalent source dipole in a template brain.  Each component di-
pole location is replaced by a 3-D Gaussian blur (representing location probabil-
ity) and, after populating the template brain with source dipoles across a potential-
ly large number of subjects, two operations are applied voxel-wise (that is, 
template brain voxel-by-voxel).  First, brain regions in which local dipole 
measures agree are identified, forming a measure consistency subspace. Next, 
voxels in this subspace are clustered using affinity clustering to form voxel do-
mains with distinct measure time courses.  Here the concept of measure domains 
in the template brain volume replaces the discrete component clusters produced by 
the default EEGLAB study processing.  Users may choose either or both paths to 
use to characterize their study data. 

CSA clustering. Arthur Tsai of Academica Sinica, Taiwan, has recently devel-
oped an advanced approach to study source clustering (Tsai et al. 2013). This ap-
plies spatiotemporal ICA decomposition using EMSICA (Tsai et al. 2006) to EEG 
(or as readily, MEG) data from its projection back onto to the oriented subject cor-
tex, modeled from a subject MR head image. The cortical surface models are then 
inflated and co-registered using tools available in Freesurfer (Fischl et al. 1999). 
Finally, source clustering across subjects is performed in the 2-D cortical surface-
aligned space rather than in 3-D template brain space (as in MPT and EEGLAB 
Study functions). A CSA (Cortical Surface Alignment) EEGLAB plug-in is envis-
aged that will allow users to perform this potentially more accurate analysis when 
MR head images are available for the individual subjects in an EEG or MEG 
study. 

2 MEEG data decomposition: An empirical data example 

For example purposes, we will illustrate the capabilities of the MEEG plug-in 
and other EEGLAB features using a simultaneously recorded multimodal (MEEG) 
MEG plus EEG dataset (Bledowski et al. 2012) that is jointly decomposed, in a 
single AMICA decomposition, to extract independent components accounting for 
both MEG and EEG data streams. The validity of the decomposition is based on 
the assumed linearity of the underlying electric and magnetic components of the 
electromagnetic field generated by the effective generators of the scalp-recorded 
(EEG) potentials and (MEG) flux. We use the NFT toolbox to create an EEG and 
MEG head model and use it to fit equivalent dipole models to the resulting inde-
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pendent component (IC) scalp maps. We focus here on describing the relations be-
tween MEG signal and EEG signal projections of the resulting ICs, including a 
first statistical examination using ICA of the degree to which radial EEG sources 
(as determined by an equivalent dipole model) are also visible in MEG.  

Data loading and preprocessing. The epoched CTF dataset included time se-
ries data from 269 radial gradiometers (3rd-order synthetic) plus 56 EEG channels. 
Five separate runs from the same recording session were imported and merged in-
to a single EEGLAB dataset of size 325 channels by 580k time points. The MEEG 
toolbox enabled the selection of alignment across runs of the MEG data (e.g., pro-
jection onto the average across-run gradiometer locations using Fieldtrip 
ft_megrealign) as well as the choice (when appropriate) of synthetic gradiometer 
order. Field contributions from external sources were removed by computation of 
third order gradients using contributions from reference sensors (Fife 1999). The 
resulting EEGLAB dataset included 324 channels and 136 6-s data epochs. These 
data were down sampled from 1200 Hz to 600 Hz, and the EEG channels were av-
erage referenced. One EEG channel was dropped following these procedures to 
keep the data full rank. 

Artifact detection and rejection. A range of artifact rejection options are 
available in EEGLAB, both automated and interactive data rejection or cleaning, 
as well as ICA-based artifact rejection. For the dataset used here, epochs contain-
ing large artifacts had been rejected based on visual inspection. 

Independent Component Analysis. The MEEG data were analyzed using 
AMICA to find independent components across the modalities. ICA in general 
proceeds from the observation that the signal measured at any sensor is a linear 
mixture of multiple sources within the brain (Makeig et al. 1996). The goal of the 
algorithm is to learn an unmixing matrix across all channels that results in a com-
plete decomposition of the data into maximally independent components (ICs). In 
single-modality MEG or EEG data, many ICs have dipolar patterns of projection 
onto the sensors (Delorme et al. 2012). In MEEG data decompositions, both the 
associated MEG and EEG scalp projection maps in clearly defined components 
may be dipolar. In such cases, the maps are near-orthogonal and the implied 
equivalent dipole locations and orientations near-identical (Liu et al. 1998), show-
ing that ICA has identified the joint electromagnetic field associated with a single 
source process that may be located using its well-defined MEG and EEG projec-
tion patterns also returned by ICA. The AMICA (Adaptive Mixture ICA; Palmer 
et al. 2007; sccn.ucsd.edu/~jason/amica_web.html) algorithm used here is the 
blind source separation method that performed best in a recent comparative test of 
22 linear decomposition algorithms -- by both producing the greatest reduction of 
the strong mutual information present in the channel data, and by finding the larg-
est number of component processes with ‘dipolar’ scalp maps compatible with the 
projection of a single cortical area or patch (Delorme et al. 2012). 

The joint analysis of MEG and EEG data using independent component analy-
sis is novel; to our knowledge it has not been previously reported. ICA itself, as a 
purely statistical method, has no notion of the type of signal it is decomposing or 
of the types of signal sources contributing independent information to the recorded 
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source mixtures. Thus, to perform ICA decomposition of MEEG data, the MEG 
and EEG channel signals are simply concatenated into a dataset (here of 324 
channels). The MEG and EEG portions of the data were individually sphered (a 
standard procedure to remove correlations and scale from data) before decomposi-
tion (P. A. Tukey & J. W. Tukey 1981). Sphering serves both to make the MEG 
and EEG signals numerically identical in size (avoiding µV versus fT scaling is-
sues), and to remove correlations between sensors (a standard step prior to ICA 
that speeds the convergence of the algorithm). The result of the joint decomposi-
tion is a collection of maximally independent components, each with a pair of spa-
tial topographies (scalp maps) representing the spatial projections of the source 
onto the MEG and EEG sensors, respectively, and a joint MEG/EEG time course 
of activation across the trials.  

Forward and inverse source modeling. The NFT toolbox was used to warp 
an MNI template 4-layer BEM model to the individual head shape defined by the 
EEG electrode locations. The EEG head model used the full BEM model, with 
forward solutions solved with METU-BEM (Akalin Acar & Gençer 2004). The 
MEG head model used the inner mesh of the BEM model (inner skull surface) to 
define a single-shell BEM model (Hämäläinen & Sarvas 1989). When individual 
anatomical MRIs are available, the NFT toolbox can use them to segment and cre-
ate individual electrical and magnetic forward head models. NFT also generates 
lead field matrices for 3-D grid (FEM) source space or for a cortically constrained 
(BEM) source-space, e.g. constructed using the Freesurfer toolbox (surf-
er.nmr.mgh.harvard.edu). The head models and lead fields generated by the NFT 
toolkit can likewise be used for volumetric or cortically constrained inverse solu-
tions in other data analysis packages. Dipoles were fit to all components automati-
cally, with a separate dipole fit for the MEG and EEG IC topography. Each fit was 
characterized by its residual variance, as well as its direction with respect to the 
radial direction (as defined in relation to a best-fit sphere, fit to the scalp surface).  

3 Results: ICA analysis of MEEG data 

Fig. 2 shows ‘ERP image’ plots of trial-by-trial activities of four functionally 
distinct ICs from this data set. Each panel shows the IC topography for EEG and 
MEG in the upper left. The EEGLAB erpimage function produces a raster image 
generated by stacking event-related trials (in any specified order) as horizontal 
colored lines, where color represents signal value. Consistent evoked response ac-
tivity across trials time locked to events with consistent trial latencies appears as 
vertical bands of color. Smoothing (vertically) lightly across trials can highlight 
these regularities. Here, the dashed black lines show the onset of visual stimulus 
presentations, and the trials are sorted in order of increasing participant reaction 
time to the cue stimulus (the curving black trace indicating the moment of the but-
ton press in each trial).  
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In Fig. 2, evoked responses of four components demonstrate ICAs tendency to 
isolate functionally distinct brain responses from the recorded mixture, and that 
this naturally generalizes to multimodal recordings. A visual cortex IC (a) follows 
onsets of visual stimuli. Note the associated dipolar and near-orthogonal MEG and 
EEG scalp maps. The evoked response of a somatomotor cortex IC (b) is primarily 
time locked to (before and after) participant button presses, and again has near-
orthogonal MEG and EEG scalp maps. A right frontal-cortex IC (c), whose spec-
trum had a broad peak in the theta band (not shown), produces increased theta 
band power (not shown here) during presentation of memorandum (1st) stimuli and 
subsequent (3rd) probe stimuli. Some of this theta burst energy was phase locked 
across trials; thus, the evoked response of this IC to the memoranda (1st stimuli) 
resembles a theta burst superimposed on a slower ERP base. Note the near-radial 
scalp pattern of the EEG scalp map, and the corresponding lack of definition of 
the (weak) MEG IC projection (discussed further below). The ERP image plot for 
an IC accounting for eye blinks (d) shows that the participant blinked consistently 
during fixation intervals. Again, the MEG and EEG projections are well defined, 
consistent with sources in the eyes themselves, and are near orthogonal. 
Fig. 2.  (next page) Four ‘ERP image’ panels showing trial-by-trial activities of four MEEG in-
dependent components. The experiment trial design is depicted above panel 1): in each trial, a 
target array of colored squares that are to be memorized is briefly presented, then replaced by a 
fixation dot during a retention interval. A single colored probe square is then presented; the par-
ticipant had to respond whether or not it was present in the initial color array. In each erpimage 
panel, vertical dashed black lines indicate the onset of each visual stimulus (heavier lines for tar-
get and probe stimuli; lighter lines for onsets of fixation dots). The large color image within each 
panel represents a raster image of all 136 individual trials, with IC activation coded by color. Ac-
tivation units are proportional to projected rms EEG µV and MEG fT. The trials are sorted in or-
der of descending reaction time, so the trace of button press moments (dark solid trace) forms a 
diagonal arc. In the erpimage panels, the trial activations have been (vertically) smoothed with a 
10-trial moving window. Below each erpimage panel is the standard trial average activation 
ERP. EEG and MEG IC topographies are shown in the upper left of each panel. a) A visual (oc-
cipital) IC (with clear, near-orthogonal EEG and MEG topographies) showing consistent evoked 
responses time-locked to presentations of visual stimuli. b) A somatomotor IC (again with clear, 
near-orthogonal EEG and MEG projections) whose evoked responses are time locked primarily 
to button presses. c) A near-radial right frontal theta band dominant component with weak and 
less clearly defined MEG projection. Response to target and probe stimuli can be modeled as a 
theta band burst superimposed on a lower-frequency response, and d) an eye blink IC (with 
clearly defined, near-orthogonal MEG and EEG projections; 2 trial smoothing window). Separa-
tion of the signals into maximally independent component processes separates out processes that 
are maximally functionally distinct as well. 
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Fig. 3 shows a more complete set of IC MEG and EEG topographies for (brain 
and non-brain process) ICs accounting for the most signal variance among the 324 
ICs returned by AMICA (pvaf = percent variance accounted for, the leftmost 
number above each topography). Each IC is represented as a vertical pair of head 
cartoons depicting the spatial projection of the IC onto the EEG (top) and MEG 
(bottom) sensor arrays. As usual, the ICs accounting for the most signal variance 
in each modality are artifactual (top row): an IC accounting for eye blinks (ac-
counting for 12.6% of EEG signal variance), and another accounting for cardio-
graphic contributions (in these data accounting for 21.7% of MEG signal vari-
ance). The relative sensativity of each modality to different artifact types is 
apparent in the pvaf values: Eye blinks and muscles account for proportionally 
more EEG then MEG variance, while for heart-related and line-noise artifacts the 
reverse holds. Many of the maps show dipole-like (‘dipolar’) topographies. 
AMICA analysis produced a pair of spatially near-orthogonal topographies for the 
MEG and EEG projections of the identified joint electromagnetic source process-
es, consistent with an origin in a single cortical patch or non-brain generator. Non-
brain components (top two rows) were so classified on the basis of having identi-
fiable non-brain time courses (Eye & EKG components) or a large high-frequency 
spectrum consistent with myographic (or line noise) activity together with equiva-
lent dipole localized to outside the brain volume (myographic or line noise 
sources). Identified Brain components have equivalent dipoles (indicated in black) 
located within the brain volume (here with residual variance of the dipole fit  <= 
20%). Dipole localization is discussed further below. 
Fig. 3. (next page) Results of the MEEG data joint independent component decomposition. Joint 
independent component (IC) topographies representing the projection patterns of individual ICs 
to the EEG (upper map) and MEG (lower map) sensor arrays as viewed from above the head. 
Each IC is represented by a vertical pair of EEG and MEG topographies. Numbers above each 
sensor map indicate percentage of (EEG or MEG) data variance explained (pvaf, percent vari-
ance accounted for); in brackets, the residual variance of the equivalent dipole fit to the scalp 
map (shown as a black dot and line on the maps), and the angle (relative to radial of a best-fit 
sphere) of the equivalent dipole. Depicted non-brain (top two rows of four ICs) and brain (bot-
tom two rows) ICs are the 16 (of 324) accounting for most signal variance in each category. The 
non-brain component processes account for eye blinks, cardiographic sources, (50-Hz) line 
noise, and scalp muscle activity, as labeled. The pair of MEG and EEG scalp maps for most 
components are near orthogonal, consistent with a single cortical or non-brain source. This holds 
for brain ICs having more tangential EEG topographies and equivalent dipoles, while (as ex-
pected) dipoles with a near-radial EEG maps and equivalent dipoles have weak (low-pvaf), and 
less dipolar MEG projections (i.e., single equivalent dipole model for these MEG scalp maps 
have higher residual variance).  
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As is well known, MEG is much less sensitive to the radial component of brain 
current sources. In joint MEEG data ICA decompositions, this relationship falls 
out naturally: sources with a strong radial component have weak and usually less 
well-defined MEG projections. For example, the four brain components in the bot-
tom row of Fig. 3 have large EEG projections, accounting for between 3.5% and 
0.9% of total signal variance (3.5% was the largest pvaf value of any brain com-
ponent). Low residual-variance dipole fits to the IC EEG scalp map return a near 
radial equivalent dipole (e.g., in 3 of these 4, with radial angle defined relative to a 
best-fit spherical head model). In contrast, the associated MEG scalp maps for the-
se ICs have quite low pvaf (< 0.2%) and are not dipolar (residual variances, 25% 
to 70%). To check for the presence of this pattern overall in the decomposition, in 
Fig. 4 we plot, for each dipolar, brain-based IC, the ratio of variance accounted for 
in the whole EEG and MEG signals (EEG pvaf / MEG pvaf) as a function of the 
angle from radial of the EEG equivalent dipole. Relative variance explained by the 
MEG portion of ICs is reduced twentyfold as the best fit dipole angle approaches a 
radial direction, and is close to 1:1 for tangential dipoles, in accordance with gen-
eral expectations, and more specifically with expectations that the MEG compo-
nent of a radial source dipole in a real head should be about 5-10% of that to a 
tangential source dipole (Ahlfors et al. 2010; Menninghaus & Lütkenhöner 1995).  

 

 
 

Fig. 4. Ratios of relative EEG/MEG strengths (as ratio of the percentages of MEG and EEG sig-
nal variance accounted for, on a log scale) for returned independent MEEG components with 
near-dipolar scalp maps (less than 20% residual variance of the single equivalent dipole model in 
at least one of the modalities), as a function of the deviation of the angle from radial of the EEG-
map equivalent dipole. Note the expected dominance of the EEG current projections, relative to 
the MEG field projections, of the ICA identified near-radial sources. 
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4 Conclusions 

For EEG (Makeig et al. 1996), fMRI (McKeown et al. 1998), MEG (Ikeda & 
Toyama 2000), ECoG (Whitmer et al. 2010), and other biomedical data modali-
ties, ICA has become a widely accepted approach that provides a powerful method 
for identifying and separating out separate information sources in multichannel da-
ta each of whose channel signals sums activity from more than one (often, not di-
rectly recorded) source.  

Here we have demonstrated that ICA may at least complement other methods 
for jointly analyzing simultaneously recorded EEG and MEG data (Dale & Sereno 
1993; Fuchs et al. 1998; Takada et al. 2000; Huang et al. 2007; Trujillo-Barreto et 
al. 2008). Its benefits may include improved source localization due to the recov-
ery of dipole-like components with small source projections. Near-radial sources 
appear as those with with poorly defined MEG projections, and may be better lo-
cated by inverting their simultaneously recorded and subsequently ICA-recovered 
electrical correlate. In addition, MEEG decomposition by ICA gives direct infor-
mation on the relative scaling of MEG and EEG signals projected by cortical (and 
other) data sources.  ICA decomposition of MEEG data should also allow princi-
pled examination of claims that MEG and EEG sources may sometimes have dif-
ferent spatial distributions. If and when this were the case, some class or classes of 
independent component processes returned by ICA applied to MEEG data should 
have very little EEG or MEG power. Here we showed that in our sample data set 
the latter was the case for EEG processes with a net radial orientation, as expected 
from theory.  

We believe the EEGLAB environment, now augmented with the MEEG plug-
in incorporating several data loading and handling functions from Fieldtrip, as 
well as custom handling of the MEEG data within EEGLAB, is suitable for per-
forming a range of custom MEG data analyses using available EEGLAB tools and 
its growing family of plug-in toolboxes.  For students and researchers exploring 
new data sets, the EEGLAB GUI and palette of data visualization methods offers a 
ready way to explore data features and data quality, while its core support for data 
decomposition by advanced ICA methods including AMICA, and further analyses 
using the IC component basis, provide a powerful platform for information- and 
biophysics-based data modeling and statistical testing of experimental hypotheses. 
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